
A Note on Hierarchical Deterministic Keys for

EC-KCDSA on Curve25519

Haim Bender Samuel Dobson Lior Yaffe

August 7, 2019

1 Introduction

Cryptocurrencies using a transactional model similar to that in Bitcoin [6] make
use of asymmetric key-pairs to prove ownership of specific funds. Sending funds
from one user to another is done by creating a transaction to an “address”
generated by the receiver. The address is, for example, the hash of a public
key along with a checksum, encoded in some human-readable format such as
Base58 or Bech32. Spending those funds requires a signature on the spending
transaction from that public key, proving both ownership and integrity of the
spend transaction.

For better privacy in such cryptocurrencies, it is usually encouraged that a
new address be generated for every transaction received, as addresses generated
by the same person are not linkable. Generating many standalone keys, though,
creates logistical and security issues when creating backups and so forth. Origi-
nally, clients would generate some number of keys (100 by default in the Bitcoin
reference client) in advance, and cache these for use when a new address was
required. Unfortunately this still required a backup of the wallet each time new
keys were generated, and if the wallet was encrypted, it would have to be un-
locked to generate these new keys.

To solve these issues, Hierarchical Deterministic (HD) address creation was pro-
posed in Bitcoin Improvement Proposal 32 (BIP-32) by Pieter Wuille [8]. From
a single “master” extended key-pair, any number of new key-pairs can be gen-
erated deterministically, and all these keys can be restored on any device from
a backup of the master key alone (assuming the keys are generated according
to the standard proposed in the BIP). In addition, it is possible to generate the
public keys of these key-pairs even without access to the private keys, allowing
generation of new addresses even when the wallet is encrypted or the private
keys are stored on a separate device.

Because BIP-32 was designed for use in Bitcoin, it uses keys generated on the
elliptic curve secp256k1 (defined in [3]), with signature generation according

1



to ECDSA on that curve. secp256k1 has a linear private-key space, meaning
that the sum of two private keys corresponds to the public key calculated as the
sum of the two respective public keys (as points on the curve). This property is
used in the design of BIP-32. Unfortunately, this is not the case in Ed25519 [2],
which uses a twisted Edwards curve bi-rationally equivalent to the Montgomery
curve Curve25519 [1]. Ed25519 has a non-linear private-key space, because the
generation of public key from private key involves hashing the private key with
SHA-512. To overcome this, a HD wallet derivation scheme for Ed25519 was
proposed by Khovratovich and Law [4].

In this note, we present a similar HD scheme for the signature algorithm EC-
KCDSA, over Curve25519. We make use of the Ed25519 derivation system as
above, because it has already been implemented on a number of platforms. We
then show how to convert the keys generated by this scheme into keys compat-
ible with EC-KCDSA.

2 Ed25519

Ed25519 is described in [2]. It uses the twisted Edwards curve E

− x2 + y2 = 1− 121665

121666
x2y2 (1)

over the finite field Fq where q = 2255 − 19 is a prime.
This curve is bi-rationally equivalent to the Montgomery curve Curve25519
over the same field, which was introduced by Bernstein in 2006 [1], with the
equivalence given by

x =
u

v

√
486664

y =
u− 1

u + 1
(2)

The generator point G ∈ E(Fq) on this curve is defined to be the unique
point on the curve where y = 4/5 and x is positive. G has order ` = 2252 +
27742317777372353535851937790883648493, and cofactor c = 3 such that #E(Fq) =
2c`. Let H denote the hash function SHA-512.

Key-pair generation A private key in Ed25519 is a 256-bit string k chosen
uniformly at random. Let s = LeastSignificant32Bytes(H(k)), where LeastSig-
nificant32Bytes interprets the bytes as a little-endian encoded integer. Modify s
by clearing the lowest 3 bits, clearing the highest bit of the last byte, and setting
the second highest bit of the last byte. We then define the Ed25519 public key
as A = sG.

2



Signing Using private key k, we sign a message M in the following way. Let
Let r = H(MostSignificant32Bytes(H(k)),M), where MostSignificant32Bytes
interprets the bytes as a little-endian encoded integer. Let R = rG and S ≡
r + H(R,A,M)s (mod `). Then (R,S) is the signature.

Verifying To verify a signature (R,S) (where 0 < S < `) on a message M
with public key A, we check that 2cSG = 2cR + 2cH(R,A,M)A. This holds
because

2cSG = 2c(r + H(R,A,M)s)G

= 2crG + 2cH(R,A,M)sG

= 2cR + 2cH(R,A,M)A

3 EC-KCDSA

EC-KCDSA is the Elliptic Curve variant of the Korean Certificate-based Dig-
ital Signature Algorithm [7, 5]. In this signature scheme, the signer has some
certification data denoted Cert Data, which contains at least a distinguished
identifier of the signer, the signer’s public key, and the domain parameters of
the algorithm (for example, the curve). Here we consider EC-KCDSA using
the elliptic curve Curve25519. Let q = 2255 − 19 as above, and let E(Fq) be
Curve25519, with equation

y2 = x3 + 486662x2 + x (3)

over Fq. Points on this curve are specified with only x coordinates (that is,
compressed elliptic curve points). On this curve, the generator point G is such
that x = 9, and has order ` as on the twisted Edwards curve above (the generator
point on the twisted Edwards curve is equivalent to the generator point on
Curve25519 by the bi-rational equivalence given above). Let H here denote the
hash function SHA-256. The hash of the signer’s certification data is denoted
z = H(Cert Data).

Key-pair generation An EC-KCDSA private key in Curve25519 is a uniformly-
randomly chosen integer x ∈ Z∗` . Let x ≡ x−1 (mod `). Then the public key is
A = xG.

Signing Using private key x to sign a message M , we first choose an ephemeral
k ∈ Z∗` uniformly at random. Then we compute r = H(kG). Finally, let
s = x(k − r ⊕H(z,M)) mod `. The signature is (r, s).

Verifying First, the verifier will check the validity of the signers certification
data Cert Data, and compute z. They should then verify that R and s are of

3



the correct size and form. The verifier computes e = r ⊕H(z,M) (mod `) and
finally checks that r = H(sY − eG). This holds because

sA− eG = x(k − r ⊕H(z,M))A− eG

= xkA− xeA− eG

= kG

because xA = xx−1G ≡ G (mod `).

4 Yaffe-Bender HD key derivation for EC-KCDSA

We now present the main result, a method for generating EC-KCDSA key-pairs
on Curve25519 using the BIP32-Ed25519 HD derivation scheme directly, devel-
oped by Yaffe and Bender. Suppose we generate a key-pair {PrivateEdDSA,PublicEdDSA}
using this scheme. Then let

kL = LeastSignificant32Bytes(SHA-512(PrivateEdDSA))

k′L = Clear lowest 3 bits of kL, clear highest bit of the last byte,

set second highest bit of the last byte

x =(k′L)−1 (mod `)

A = Convert ED25519 to Curve25519 public key(PublicEdDSA)

Return x as the private key and A as the public key.

This, in effect, combines the hashing and bit-modification stages of the pub-
lic key generation in EdDSA directly into the private key. We must then invert
it to ensure the correct relationship holds betwen x and A, because in EC-
KCDSA, the private key is inverted to generate the public key.

Because the curve used by Ed25519 is birationally equivalent to Curve25519,
we can directly convert the public key (point on the twisted Edwards curve)
to a point on Curve25519. Points on Curve25519 are encoded with their x co-
ordinate only, as discussed above, because the Montgomery ladder uses only x
coordinates in its computation.

We now remark on the fact that the derivation of the EdDSA public key from
the randomly selected private key involves setting and clearing certain bits. The
clearing of the lowest 3 bits is done to ensure the key is a multiple of 8, prevent-
ing small-subgroup attacks, while the highest and second highest bits are fixed
in order to prevent timing attacks on Curve25519. Other than these modifica-
tions, the distribution of the private keys x should be indistinguishable from
uniformly random and suitable for use with EC-KCDSA.

4



References

[1] D. J. Bernstein. Curve25519: New diffie-hellman speed records. In M. Yung,
Y. Dodis, A. Kiayias, and T. Malkin, editors, Public Key Cryptography -
PKC 2006, pages 207–228, Berlin, Heidelberg, 2006. Springer Berlin Heidel-
berg.

[2] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed
high-security signatures. Journal of Cryptographic Engineering, 2(2):77–89,
Sep 2012.

[3] Certicom Research. Sec 2: Recommended elliptic curve domain parameters,
Jan. 2010. https://www.secg.org/sec2-v2.pdf.

[4] D. Khovratovich and J. Law. BIP32-Ed25519: Hierarchical deterministic
keys over a non-linear keyspace. In 2017 IEEE European Symposium on
Security and Privacy Workshops (EuroS PW), pages 27–31, April 2017.

[5] C. H. Lim and P. J. Lee. A study on the proposed korean digital signa-
ture algorithm. In K. Ohta and D. Pei, editors, Advances in Cryptology —
ASIACRYPT’98, pages 175–186, Berlin, Heidelberg, 1998. Springer Berlin
Heidelberg.

[6] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http://

bitcoin.org/bitcoin.pdf, 2008.

[7] K. T. F. Team. The korean certificate-based digital signature algorithm,
1998.

[8] P. Wuille. BIP 32: Hierarchical deterministic wallets. https://github.com/
bitcoin/bips/blob/master/bip-0032.mediawiki. Accessed: 2019-05-12.

5

https://www.secg.org/sec2-v2.pdf
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

	Introduction
	Ed25519
	EC-KCDSA
	Yaffe-Bender HD key derivation for EC-KCDSA

