
Debunking Apollo. Again.

TLDR

1. There are no changes to the handling of private transactions in Apollo Olympus 2.0. All
private transactions have been exported to a csv file which is available for download on our
website: https://www.jelurida.com/sites/default/files/private_transactions.csv

2. The database level mixing they announce is referring to a central “mixing” server oper-
ated by their online wallet as a closed source mixer which can likely de-anonymize all trans-
actions. In fact anybody can do that as we demonstrate here by solving the two challenges
posted by Bitfi and an Apollo suporter:
https://www.jelurida.com/sites/default/files/bitfi-challenge.pdf
https://www.jelurida.com/sites/default/files/godzilla-challenge.pdf

3. The node IP masking is another centralized solution supported by servers operated by the
Apollo foundation.

4. We will not be updating the snakeoil node since it has fulfilled its purpose and we do not
intend to maintain indefinitely a customized Apollo node. Instead we have published the
complete list of “private” transactions up until now (April 3, 2019) and the small snippet of
code that anyone can use to recreate or update this list (see below the technical part).

In the last few days there has been a lot of social media activity coming from Apollo Com-
munity members (humans and bots) on Twitter, Telegram and other channels claiming that
we intentionally spread “fud” about the Apollo Currency project. The reason for this was an
article in CCN.com pointing out some “red flags” about Apollo and using as reference the
“snake oil” server that is accessible through our website https://www.jelurida.com/apollo-
snake-oil. Shortly after that, the author of the article stated on Twitter that he had not done
proper research and would be correcting the article. CCN also submitted an apology to the
Apollo project https://www.ccn.com/ccn-an-apology-to-apollo-john-mcafee-and-our-readers .
In the meantime, we and our community members have been called “fudsters”, “haters,”
and much worse, on various social media channels.

So, in the interest of straightening things out, we felt compelled to take a closer look into an
issue which we frankly considered something of the past.
But first - a little context for the people not familiar with the whole story:

The Apollo project https://apollocurrency.com/en/ was launched last year and it is a clone of
Nxt. Being one of many such clones, it specifically attracted our attention because of two
things:
- They had copied the code and launched a new blockchain but they had forgotten three key
requirements: to quote the proper license, to release the source code, and to include the
proper copyright notices of Nxt developers and Jelurida https://www.jelurida.com/jelurida-
apollo-public-statement per the JPL.
- They didn’t give any credit to Nxt and presented Apollo as if they developed all the avail-
able features – which were the result of our 5 years of development and production experi-
ence.

And while we fought to correct the IP violation (and succeeded at the end) - there was little
we could do about the second issue which is partly a question of decency and moral integ-
rity - things that cannot be enforced by law.

Apollo also claimed (and still does) that they are on a “privacy mission” and that they have

https://www.jelurida.com/jpl
https://www.jelurida.com/jelurida-apollo-public-statement
https://www.jelurida.com/jelurida-apollo-public-statement
https://www.jelurida.com/jelurida-apollo-public-statement
https://apollocurrency.com/en/
https://apollocurrency.com/en/
https://www.ccn.com/ccn-an-apology-to-apollo-john-mcafee-and-our-readers
https://www.ccn.com/ccn-an-apology-to-apollo-john-mcafee-and-our-readers
https://www.jelurida.com/apollo-snake-oil
https://www.jelurida.com/apollo-snake-oil
https://www.jelurida.com/apollo-snake-oil
https://www.jelurida.com/sites/default/files/godzilla-challenge.pdf
https://www.jelurida.com/sites/default/files/godzilla-challenge.pdf
https://www.jelurida.com/sites/default/files/bitfi-challenge.pdf
https://www.jelurida.com/sites/default/files/bitfi-challenge.pdf
https://www.jelurida.com/sites/default/files/private_transactions.csv
https://www.jelurida.com/sites/default/files/private_transactions.csv

implemented “private transactions” on their blockchain. Naturally, people were asking us “Is
that true, is it safe to use this feature?” And they were asking us because, well, who better
to ask than the Nxt developers who actually wrote the codebase?

So, we took the time to look at the code and discovered that the so-claimed “private trans-
actions” are actually very visible on the blockchain and they are only not visible in the UI. To
prove this, we had created the “snakeoil” - a modified version of Nxt to interact with the
Apollo blockchain, to show that actually the “private” transactions are not so private and to
remind our community members to always double check and do as much research as possi-
ble when it comes not only to Apollo, but to any other cryptocurrency project. Shortly after
that, Apollo started “explaining” that this feature is only at the “API level” - a statement
ridiculous unto itself. The illusion of privacy is even worse than the lack of privacy. Those
who do not understand what “API” means may think that it takes a quantum computer or
highly advanced cryptographic knowledge to reveal their transactions, while in reality, a be-
ginner developer can do it with 10 lines of code.

Today, apparently this issue is brought into light again in connection with the above men-
tioned article. Apollo says that now the privacy is on the “Database level,” which again, we
didn’t know exactly how to interpret. So once again, we had to spend time to look into their
code and see if they have actually accomplished their privacy mission. But not even close....

What we found was the following:

1. Nothing in the “private transactions” has changed. If they knew this feature doesn’t work
- why do they continue to keep it?

2. We came to understand that this “Database level” privacy is achieved by using a central-
ized mixer, which again raises the question - where is the privacy in that and what is the def-
inition of privacy as understood by Apollo? To keep complete control over users’ privacy and
funds? This totally defeats the purpose of the blockchain - send your funds to some “mixer”,
trust it completely, and hope to receive it in another account after the mixing...

In a Medium article they state:

“Database-Level Coin Mixing
Olympus Protocol 2.0 adds coin mixing feature which offers an extra layer of privacy and security.
The function filters a sender’s transaction within Apollo’s database. It mixes the transaction with others
that were sent in the same time period — the effect is to completely mask the funds’ destination. On
the blockchain, the coin mixing feature shows a sender’s transaction but not the destination.”

https://medium.com/@apollocurrency/-fc4d9980877c

So “within Apollo’s database” actually mean their own servers.... If this mixing all happens
on a database owned by Apollo - they and/or their computers inevitably know the destina-
tion of the mixing funds, and even if we assume that they don’t keep logs or record the re-
cipients now, nothing can stop them from doing so in the future. But this is not the only
problem with this “mixer” - its algorithm is so trivial that it is possible to manually track all
transactions. We were able to do that for two different examples as documented here (one
of them going through the “mixer” twice):

https://www.jelurida.com/sites/default/files/bitfi-challenge.pdf
https://www.jelurida.com/sites/default/files/godzilla-challenge.pdf

This is also fundamentally different from the fully decentralized coin shuffling as pioneered
by Nxt more than 4 years ago, which does not rely on any centralized third party. They
should have stuck to it. Even with the “mixer” being closed source and us having no knowl-

https://www.jelurida.com/sites/default/files/godzilla-challenge.pdf
https://www.jelurida.com/sites/default/files/godzilla-challenge.pdf
https://www.jelurida.com/sites/default/files/bitfi-challenge.pdf
https://www.jelurida.com/sites/default/files/bitfi-challenge.pdf
https://medium.com/@apollocurrency/federal-reserve-part-2-the-real-cause-of-1930s-great-depression-fc4d9980877c
https://medium.com/@apollocurrency/federal-reserve-part-2-the-real-cause-of-1930s-great-depression-fc4d9980877c
https://medium.com/@apollocurrency/federal-reserve-part-2-the-real-cause-of-1930s-great-depression-fc4d9980877c
https://medium.com/@apollocurrency/federal-reserve-part-2-the-real-cause-of-1930s-great-depression-fc4d9980877c

edge of its exact algorithm - it was straight forward to track the transactions that went
through it.

To support our findings, we include below a full technical report.

We will not be commenting on Apollo’s “autoupdate” anti-feature (automatic update for
cryptocurrency software ?!?) or the closed source binary doing “IP - masking”, because they
go out of the scope of this article.

We will be posting this article also on nxtforum and r/NXT and we invite all independent de-
velopers to join the conversation and review our conclusions. We will also be reaching out to
CCN with these findings and hope that they will respect our right to respond to the their lat-
est article.

Apollo analysis, based on the latest code published on Github as of 2019-04-02, as of last master branch com-
mit:

https://github.com/ApolloFoundation/Apollo/commit/a4ddeacaa06e473be75ffd07fb79283c6271b439

1. There has been no change in the processing of the private transactions, those of type 0, subtype 1 (“PrivatePay-
ment”) compared to our last review of this code in 2018.

2. By making the following trivial code modification (new code in yellow) in TransactionType.java:

private static final BufferedWriter writer;
static {

try {
writer = Files.newBufferedWriter(Paths.get("private_transactions.csv"));
writer.write("height,timestamp,transaction_id,sender,recipient,amount,fee");
writer.newLine();

} catch (IOException e) {
throw new RuntimeException(e);

}
}

final void apply(TransactionImpl transaction, Account senderAccount, Account recipientAccount) {
long amount = transaction.getAmountATM();

 long transactionId = transaction.getId();
 if (!transaction.attachmentIsPhased()) {

senderAccount.addToBalanceATM(getLedgerEvent(), transactionId, -amount, -transaction.getFeeATM());
} else {

senderAccount.addToBalanceATM(getLedgerEvent(), transactionId, -amount);
}
if (recipientAccount != null) {

recipientAccount.addToBalanceAndUnconfirmedBalanceATM(getLedgerEvent(), transactionId, amount);
}
if (transaction.getType() == Payment.PRIVATE) {

try {
writer.write(String.format("%d,%d,%s,%s,%s,%d,%d",

transaction.getHeight(),
transaction.getTimestamp(),
transaction.getStringId(),
Convert.rsAccount(senderAccount.getId()),
Convert.rsAccount(recipientAccount.getId()),
amount,
transaction.getFeeATM()));

writer.newLine();
writer.flush();

} catch (IOException e) {
throw new RuntimeException(e);

}
}
applyAttachment(transaction, senderAccount, recipientAccount);

}

we were able to export to a CSV file a complete list of all 19k private payment transactions up until now. The list is
available for download here: https://www.jelurida.com/sites/default/files/private_transactions.csv

https://www.jelurida.com/sites/default/files/private_transactions.csv
https://www.jelurida.com/sites/default/files/private_transactions.csv
https://github.com/ApolloFoundation/Apollo/commit/a4ddeacaa06e473be75ffd07fb79283c6271b439
https://github.com/ApolloFoundation/Apollo/commit/a4ddeacaa06e473be75ffd07fb79283c6271b439
https://github.com/ApolloFoundation/Apollo/commit/a4ddeacaa06e473be75ffd07fb79283c6271b439
https://github.com/ApolloFoundation/Apollo/commit/a4ddeacaa06e473be75ffd07fb79283c6271b439

3. Comparing the result of installing the binary release:

https://github.com/ApolloFoundation/Apollo/releases/download/1.26.3/ApolloWallet-linux-1.26.3.sh

with the source repository obtained by cloning the Apollo Github:

git clone https://github.com/ApolloFoundation/Apollo.git

the binary release contains two important additional components, the source code of which is not provided:

root@dinosaur:/usr/local/ApolloWallet/ApolloWallet# ls -l tor/
total 17868
-rw-r--r-- 1 root staff 4251904 Jan 24 17:33 geoip
-rw-r--r-- 1 root staff 2378805 Jan 24 17:33 geoip6
-rw-r--r-- 1 root staff 2575848 Jan 24 17:33 libcrypto.so.1.1
-rw-r--r-- 1 root staff 330128 Jan 24 17:33 libevent-2.1.so.6
-rw-r--r-- 1 root staff 451728 Jan 24 17:33 libssl.so.1.1
-rwxr-xr-x 1 root staff 5297944 Jan 24 17:33 tor
-rw-r--r-- 1 root staff 2707304 Jan 24 17:33 tor-gencert
-rw-r--r-- 1 root staff 1375 Jan 24 17:33 torify
-rw-r--r-- 1 root staff 272632 Jan 24 17:33 tor-resolve
-rw-r--r-- 1 root staff 8999 Jan 24 17:33 torsocks

root@dinosaur:/usr/local/ApolloWallet/ApolloWallet# ls -l secureTransport/
total 8248
-rw-r--r-- 1 root staff 277 Apr 2 16:03 apltrans000.log
-rwxr-xr-x 1 root staff 111 Jan 24 17:33 runClient.sh
-rwxr-xr-x 1 root staff 8431576 Jan 24 17:33 securenodexchg
-rw-r--r-- 1 root staff 279 Jan 24 17:33 servers.json

The tor subdirectory apparently contains a tor installation, to allow for proxying peer connections over tor. This
ability is already present in Nxt, except that we don’t bundle tor itself in our releases. Instead, we expect advanced
users to install and configure a tor proxy themselves. We have not tried to find out if the tor binaries and libraries
bundled with the Apollo installer have been customized in any way, which could necessitate their bundling instead
of relying on a user-provided tor proxy.

The secureTransport subdirectory is more interesting, as it contains a closed source binary, securenodexchg. When
the Apollo server is started using the run-secure-transport.sh script, which in turn calls secureTransport/runClient.sh,
the securenodexchg binary is executed (with root privileges), to apparently start a server and create a local
10.75.110.0 tunnel interface which proxies the peer networking requests from the Apollo server to one or more of
the IP addresses hardcoded in secureTransport/servers.json:

root@dinosaur:/usr/local/ApolloWallet# more ApolloWallet/run-secure-transport.sh
#!/bin/bash

WARNING: java still bypasses the tor proxy when sending DNS queries and
this can reveal the fact that you are running Apl, however blocks and
transactions will be sent over tor only. Requires a tor proxy running
at localhost:9050. Set apl.shareMyAddress=false when using tor.

if [-x jre/bin/java]; then
 JAVA=./jre/bin/java
else
 JAVA=java
fi

unamestr=`uname`
if [["$unamestr" == 'Linux']]; then

cd secureTransport

https://github.com/ApolloFoundation/Apollo.git
https://github.com/ApolloFoundation/Apollo.git
https://github.com/ApolloFoundation/Apollo.git
https://github.com/ApolloFoundation/Apollo.git
https://github.com/ApolloFoundation/Apollo/releases/download/1.26.3/ApolloWallet-linux-1.26.3.sh
https://github.com/ApolloFoundation/Apollo/releases/download/1.26.3/ApolloWallet-linux-1.26.3.sh
https://github.com/ApolloFoundation/Apollo/releases/download/1.26.3/ApolloWallet-linux-1.26.3.sh
https://github.com/ApolloFoundation/Apollo/releases/download/1.26.3/ApolloWallet-linux-1.26.3.sh

sudo ./runClient.sh
cd ..

fi

xdock=''

if [["$unamestr" == 'Darwin']]; then
xdock=-Xdock:icon=./favicon.ico

fi

${JAVA} $xdock -DsocksProxyHost=10.75.110.1 -DsocksProxyPort=1088 -Dapl.runtime.
mode=desktop -Dapl.enablePeerUPnP=false -jar Apollo.jar

root@dinosaur:/usr/local/ApolloWallet# more ApolloWallet/secureTransport/runClient.sh
killall -KILL securenodexchg
pkill -KILL securenodexchg
./securenodexchg --mode 0 --shuffle --unique 20001 &

root@dinosaur:/usr/local/ApolloWallet# file ApolloWallet/secureTransport/securenodexchg
ApolloWallet/secureTransport/securenodexchg: ELF 64-bit LSB executable, x86-64, version 1 (GNU/Linux), stati-
cally linked, for GNU/Linux 3.2.0, BuildID[sha1]=dded4cd869ee69c82c9d3b8d4e97a4b636a16e9c, not stripped

root@dinosaur:/usr/local/ApolloWallet# more ApolloWallet/secureTransport/servers.json
{
 "servers": [
 "51.15.249.23:25000",
 "163.172.182.242:25000",
 "51.15.228.121:25000",
 "163.172.187.100:25000",
 "51.15.217.97:25000",
 "212.47.254.71:25000",
 "51.15.249.27:25000",
 "163.172.172.121:25000",
 "51.15.236.93:25000"
]
}

Output from running securenodexchg:

[2019-04-02 17:26:28.185835][info]: Unique mode of operation is enabled
[2019-04-02 17:26:28.186066][info]: UniqueModePort: 20001
[2019-04-02 17:26:28.186118][info]: starting singularity locker
[2019-04-02 17:26:28.186174][info]: Running in 'CLIENT' operation mode
host: 51.15.249.23
port: 25000
host: 163.172.182.242
port: 25000
host: 51.15.228.121
port: 25000
host: 163.172.187.100
port: 25000
host: 51.15.217.97
port: 25000
host: 212.47.254.71
port: 25000
host: 51.15.249.27
port: 25000
host: 163.172.172.121
port: 25000

host: 51.15.236.93
port: 25000
[2019-04-02 17:26:28.186511][info]: Shuffle routine activated
[2019-04-02 17:26:28.186565][info]: 163.172.172.121:25000
[2019-04-02 17:26:28.186601][info]: 163.172.182.242:25000
[2019-04-02 17:26:28.186635][info]: 51.15.217.97:25000
[2019-04-02 17:26:28.186665][info]: 51.15.249.23:25000
[2019-04-02 17:26:28.186700][info]: 51.15.249.27:25000
[2019-04-02 17:26:28.186734][info]: 163.172.187.100:25000
[2019-04-02 17:26:28.186767][info]: 51.15.228.121:25000
[2019-04-02 17:26:28.186800][info]: 51.15.236.93:25000
[2019-04-02 17:26:28.186833][info]: 212.47.254.71:25000
[2019-04-02 17:26:29.188347][info]: connecting: 163.172.172.121 : 25000, entity: 0
[2019-04-02 17:26:29.188577][info]: final socket receive buf: 425984
[2019-04-02 17:26:29.188629][info]: final socket send buf: 425984
[2019-04-02 17:26:29.188676][info]: shifting to: 1
[2019-04-02 17:26:29.218258][info]: json data: {"tunaddr":"10.75.110.75","netmask":"255.255.255.0"}

[2019-04-02 17:26:29.218462][info]: tunaddr: 10.75.110.75
[2019-04-02 17:26:29.218506][info]: netmask: 255.255.255.0
[2019-04-02 17:26:29.218542][info]: raising tun interface
opening :
[2019-04-02 17:26:29.219801][info]: Tunnel device id: 6

Apparently, this securenodexchg tunneling proxy is what implements the so-called IP-Masking Apollo feature. We
can only question the sanity of someone running a closed source binary, as root, that creates a tunnel interface and
establishes network connections, on a machine used for handling cryptocurrency. As for any “privacy” such a proxy
can provide - it is all at the mercy of those running the servers defined in secureTransport/servers.json. Which we as-
sume is the Apollo Foundation.

4. Regarding the “database level mixing” touted by the Apollo team, we were unable to find anything in the pub-
lished source code that can act as a mixer, other than the well known and fully copied from Nxt without changes
coin shuffling. We now assume that this feature description refers to a centralized mixing service that the Apollo
Foundation runs. We also noticed that when using the online Apollo wallet, available at https://apollowallet.org/ ,
when trying to send a “private” transaction, the UI offers a choice of “Use Mixer”:

https://apollowallet.org/
https://apollowallet.org/

However, no such “Use Mixer” checkbox is available when running a local installation, either the one produced by
the binary installer:

or the one produced by compiling from latest source:

We are unable to investigate further how the “Use Mixer” feature works, given that it is only present on the online
Apollo wallet, but as this mixer is not part of the decentralized blockchain consensus, is not open source, and is not
available for other independent parties to run, relying on such centralized mixer for privacy ultimately requires full
trust in those running the servers, i.e. the Apollo Foundation.

