
1

ARDOR Load Test 2019

Jelurida Swiss SA
www.jelurida.com

Abstract: We have conducted load testing of the Ardor blockchain software in a test
environment in order to evaluate the maximum sustainable transaction throughput of the
system and the performance of the network and fork resolution algorithm under high
transaction load. A steady throughput of above 100 TPS for more than two weeks has been
achieved, and 2 second block times are feasible although not really necessary.

1. Hardware setup

We used Shuttle DH310 servers, configured with Intel i7-8700 3.2 GHz 6-core CPUs, 16 GB SO-DDR4
2666MHz RAM, and Samsung 970 PRO solid state drives, costing around 1,000 CHF total each.

All servers were running FreeBSD 12.0, using UFS filesystem, with OpenJDK 1.8.0_202 compiled from
source. The servers were connected to a gigabit router, and the network was tested to sustain more than 932
Mbits/s and 0.220 ms ping times.

2. Software modifications

A modified version of the Ardor software, as of release 2.2.2 with some optimizations and bugfixes (all of
which are now included in 2.2.3) was prepared for the loadtest.

The following changes were made, compared to the public Ardor blockchain version:

 A new genesis block was created, with 10 hardcoded test accounts, having the numbers 0 to 9 as
passwords, and an initial balance of 100,000,000 on each chain. Four child chains were used, as in the
public Ardor blockchain.

 The desktop application was disabled, but the browser-based UI was regularly used to monitor the current
blockchain state on each server.

 The Bundler code was modified to perform bundling only before a block is generated, instead of every time
a new unconfirmed transaction is received since this was identified as a considerable performance
bottleneck.

The following code constants and parameters were modified in order to increase (and practically remove) the
hardcoded limits on transaction counts, sizes, and network limits:

Parameter Used in test Production default
Constants.MAX_NUMBER_OF_FXT_TRANSACTIONS 10000 10

Constants.MAX_NUMBER_OF_CHILD_TRANSACTIONS 10000 100

Constants.MAX_CHILDBLOCK_PAYLOAD_LENGTH 10000*1024 128*1024

NetworkMessage.MAX_ARRAY_LENGTH Integer.MAX_VALUE 48*1024

NetworkMessage.MAX_LIST_SIZE Integer.MAX_VALUE 1500

NetworkHandler.MAX_PENDING_MESSAGES 250 25

nxt.forgingDelay 0 10

nxt.batchCommitSize 10 100

nxt.blacklistingPeriod 60 600

nxt.maxUnconfirmedTransactions 36000 2000

nxt.testnetNumberOfForkConfirmations 0 5

getMoreBlocksThread ran every (sec.) 2 5

 The Constants.TESTNET_ACCELERATION parameter was varied as needed to achieve block times of 2,
5, or 10 seconds.

 The H2 database was started with MVCC=TRUE;MV_STORE=TRUE (now the default since Ardor 2.2.3).

2

3. Loadtest script parameters

The modified Ardor software was installed on four identical servers, starting with an empty blockchain.
Forging and bundling was configured to run with several accounts as follows:

Server Forging accounts Bundling accounts
(each bundling on all chains)

Voyager 0, 1, 2 0, 1, 2

Enterprise 3, 4, 5 3, 4, 5

Discovery 6, 7 6, 7

Defiant 8, 9 8, 9

The JMeter script was run from a separate server with similar hardware configuration. The script was
submitting ordinary payment transactions on all child chains as well as on the parent chain, randomly from all
test accounts to all servers, using a predefined number of threads for each run. The following configuration files
were used by the script:

servers.csv – lists the remote server addresses.
chains.csv – lists the chain properties [chain id, default transaction fee].
accounts.csv – lists sender [secret phrase, recipient address].

The JMeter script iterated over these CSV files sequentially wrapping around when reaching the end of a
file. This created an even distribution of requests between servers, across chains and between sender and
recipient account pairs. Distributing the transactions to different sender and recipient accounts is important for
maintaining a realistic scenario and for not overloading the transaction table indexes.

To prevent duplicate transactions, a counter was maintained by the script, the transaction amount field was
set to the counter value thus preventing duplicate transactions. To prevent accumulation of waiting threads on the
script side when a server is busy, sleep times were randomized between 0 and 200 milliseconds.

4. Initial runs

A number of 1-2 hour test runs were conducted to evaluate the system behavior with different block times
and number of JMeter threads:

Threads Blocktime Time Tx Count TPS Blockheight
40 5 3600 432,200 120 655

40 2 3600 465,400 129 1570

50 10 5200 717,500 137 470

50 5 3600 520,100 144 670

50 2 3600 540,700 150 1524

60 5 3600 421,000 117 680

60 2 2800 418,200 149 1180

Increasing the number of threads for the loadtest beyond 60 started to only reduce the TPS achieved. While
reducing block times from 10s to 5s and 2s resulted in some increase of the transaction throughput, that increase
was certainly not proportional to the increased number of blocks. Setting the blocktime to 20 s lead to an
accumulation of too many unconfirmed transactions in memory which started to be automatically discarded by
the system as designed, therefore blocktimes were kept at 10 s or below in all test runs.

5. Extended duration loadtest

Based on the above results, we embarked on a long duration loadtest, to probe how sustainable this
performance is as the total number of transactions and database size keeps growing. We used a setting of 60
threads in the JMeter script, and a blocktime of 2 seconds. The total transaction count and average TPS in the
first hours were as follows:

3

Time Tx count TPS Blockheight db size
3780 590 600 156 1626 1 GB

38000 5,162,000 136 16100 8 GB

43000 5,663,700 132 18220 9 GB

The servers were left running. The transaction throughput was checked daily and found to slowly drop
further below 130 TPS, but consistently exceeding 100 TPS for the first 10 days.

During all loadtest runs, we observed the regular formation of forks of up to 20-30 blocks, especially with the
short 2 s block times. Forks, however, always resolved and all four servers remained in eventual consensus.

The JMeter log and the server logs were regularly monitored to ensure the number of errors remained
insignificant and all transactions submitted were being processed without a transaction loss.

After 17 days (1,510,000 s), the database size had reached more than 170 GB, and the test had to be stopped
as the servers were about to run out of disk space. The total transaction count from all chains was 150,760,898,
resulting in an overall average of 99.84 transactions per second. The total number of blocks was 641,270, for
an average of 2.35 s block time. For comparison, as of 21.05.2019 the Bitcoin blockchain for its 10 years, 5
months of existence has processed 415 M transactions, is currently at block 576942, and its full database
requires 220 GB.

It should be noted that shutting down and restarting the servers resulted in a significant reduction of database
size, from 170 GB down to 30 GB. This can be attributed to the H2 database only being able to perform a full
"compact" (an internal database operation which discards obsolete records) on shutdown. For a production
system running at such transaction volume, an investigation of whether a more efficient database compaction can
be performed at runtime without requiring server restarts should be undertaken. We should also mention that
applying our existing compact.sh script (which dumps and reloads the database content from an sql backup file)
to the already compacted database actually resulted in an increase of the database size to 50 GB, only to drop
back to 30 GB after another server restart cycle.

6. Performance analysis

After the end of the loadtest run, the following numbers were obtained by querying the blockchain database
directly:

Total number of transactions on all chains: 150,760,898
Total runtime: 1,509,958 s (17.5 days)
Total number of blocks: 641,270
Total number of parent chain transactions1: 35,296,971
Total number of child chain blocks: 1,950,914
Total number of child chain transactions: 113,513,013

From those, the following averages can be calculated:

Average block time: 1,509,958 / 641,270 = 2.35 s
Average total transaction throughput: 150,760,898 / 1,509,958 = 99.84 TPS
Average total transaction count per block: 150,760,898 / 641,270 = 235
Average parent chain transactions per block1: 35,296,971 / 641,270 = 55
Average "child chain block" tx per block: 1,950,914 / 641,270 = 3
Average child chain transactions per block: 113,513,013 / 641,270 = 177

1excluding "child chain block" transactions

The variation of transaction throughput with time as the blockchain size increases can be seen from the
following table and graph, which presents the total transaction counts for each subsequent range of 10,000
blocks, the TPS (transactions per second) for that 10,000 blocks interval, and the cumulative TPS for the run up
to that height:

4

HEIGHT RANGE TRANSACTION COUNT TIME START TIME END TIME INTERVAL TPS TOTAL TPS
10000 2999662 9158037 9181513 23476 127 127

20000 3359640 9181519 9205210 23691 141 134

30000 3131136 9205212 9228709 23497 133 134

40000 2440533 9228713 9252202 23489 103 126

50000 2158691 9252203 9275727 23524 91 119

60000 2516395 9275728 9299269 23541 106 117

70000 2927594 9299271 9322765 23494 124 118

80000 2474331 9322769 9346417 23648 104 116

90000 2574155 9346419 9369915 23496 109 116

100000 2352736 9369917 9393464 23547 99 114

110000 2487948 9393465 9417091 23626 105 113

120000 2511750 9417094 9440604 23510 106 113

130000 2237704 9440608 9464209 23601 94 111

140000 2516855 9464211 9487651 23440 107 111

150000 2368842 9487652 9511169 23517 100 110

160000 2146324 9511177 9534633 23456 91 109

170000 2362713 9534645 9558182 23537 100 108

180000 2751315 9558186 9581697 23511 117 109

190000 2640420 9581700 9605103 23403 112 109

200000 2239181 9605274 9628745 23471 95 108

210000 2290690 9628746 9652364 23618 96 108

220000 2300192 9652369 9675975 23606 97 107

230000 2194209 9675978 9699360 23382 93 107

240000 2650320 9699370 9722848 23478 112 107

250000 2510739 9722858 9746398 23540 106 107

260000 2111959 9746402 9770038 23636 89 106

270000 2460946 9770040 9793773 23733 103 106

280000 2655856 9793778 9817370 23592 112 106

290000 2076764 9817372 9840775 23403 88 106

300000 2249015 9840776 9864419 23643 95 105

310000 2215661 9864421 9887931 23510 94 105

320000 2516644 9887933 9911525 23592 106 105

330000 2377183 9911528 9935279 23751 100 105

340000 2384781 9935290 9958902 23612 100 105

350000 2294352 9958905 9982471 23566 97 104

360000 2151639 9982474 10005969 23495 91 104

370000 2193786 10005972 10029460 23488 93 104

380000 2673651 10029464 10052294 22830 117 104

390000 2462367 10053207 10076414 23207 106 104

400000 2255827 10076421 10099881 23460 96 104

410000 1845552 10099896 10123411 23515 78 103

420000 2304304 10123414 10146963 23549 97 103

430000 2263251 10146973 10170663 23690 95 103

440000 2213691 10170666 10194283 23617 93 103

450000 2386660 10194290 10217875 23585 101 103

460000 2237182 10217879 10241437 23558 94 102

470000 2329259 10241440 10264969 23529 98 102

480000 2129668 10264971 10288385 23414 90 102

490000 2270822 10288386 10311956 23570 96 102

500000 2555766 10311958 10335390 23432 109 102

510000 2257722 10335797 10359227 23430 96 102

520000 1745221 10359229 10382797 23568 74 101

530000 2450031 10382801 10406256 23455 104 101

540000 2340534 10406259 10429749 23490 99 101

550000 2014829 10429758 10453333 23575 85 101

560000 2214078 10453337 10476749 23412 94 101

570000 1961592 10476751 10500118 23367 83 101

580000 1997552 10500119 10521828 21709 92 100

590000 1971612 10523644 10547226 23582 83 100

600000 2164251 10547231 10570821 23590 91 100

610000 2189046 10570822 10594375 23553 92 100

620000 2300909 10594376 10617968 23592 97 100

630000 1708795 10617969 10640683 22714 75 99

640000 2326123 10641865 10665039 23174 100 99

5

It can be observed that after some initial decline of the TPS from 140+ to around 100 TPS over the first
50,000 blocks (about a day and a half), the TPS stabilizes around 100 TPS and doesn’t decline much further for
the rest of the run.

We also decided to look at the maximum per-block transaction counts encountered during the run.

Top 20 highest counts of parent transactions per block:

sql> select count(*) c, height from transaction_fxt where type=-2 group by height
order by c desc limit 20;

Tx count Height
9998 75641
8795 470494
6331 175558
6059 107818
5839 62569
5047 284554
4553 498434
4428 291574
3787 597586
3679 624551
3384 307580
3272 581496
3215 38276
3086 597531
3074 206504
3029 568367
3029 624569
2924 211434
2871 79540
2791 195614

6

Top 10 highest counts of child chain transactions per child chain block for the Ignis child chain:

sql> select count(*) c, height from ignis.transaction group by height order by c
desc limit 10;

Tx count Height
2456 29284
2273 277331
2212 173686
2165 558270
2160 44489
2130 368116
2128 584542
2081 495969
2068 430378
2067 485338

Top 20 highest counts of child chain transactions per block, aggregate of all child chains:

sql> select count(*) c, height from (select id, height from ignis.transaction union
all select id, height from aeur.transaction union all select id, height from
bitswift.transaction union all select id, height from mpg.transaction) group by
height order by c desc limit 20;

Tx count Height
9827 29284
7662 1819
7205 30495
7112 277331
7073 173686
6922 558270
6911 44489
6851 4635
6844 29161
6829 8645
6816 368116
6815 1002
6812 584542
6805 4916
6795 6897
6653 28086
6615 485338
6600 430378
6532 24301
6526 20595

7

Lastly, the distribution of blocks with different total transaction counts, in ranges of 100, has been
summarized in the following table and graph:

COUNT RANGE NUMBER OF BLOCKS COUNT RANGE NUMBER OF BLOCKS

0 116554 5000 70

100 298037 5100 52

200 67472 5200 65

300 34820 5300 48

400 23007 5400 39

500 16871 5500 39

600 12974 5600 32

700 10354 5700 26

800 8400 5800 37

900 6887 5900 21

1000 5772 6000 18

1100 4952 6100 22

1200 4414 6200 22

1300 3754 6300 20

1400 3151 6400 21

1500 2634 6500 21

1600 2392 6600 18

1700 2035 6700 14

1800 1868 6800 13

1900 1544 6900 8

2000 1431 7000 9

2100 1274 7100 6

2200 1160 7200 8

2300 1014 7300 7

2400 823 7400 6

2500 739 7500 6

2600 694 7600 5

2700 583 7700 5

2800 519 7800 4

2900 458 7900 4

3000 470 8000 6

3100 427 8100 5

3200 351 8200 2

3300 338 8300 3

3400 287 8400 2

3500 227 8500 1

3600 231 8600 6

3700 207 8700 2

3800 185 8800 3

3900 165 8900 0

4000 173 9000 1

4100 150 9100 1

4200 155 9200 1

4300 118 9300 1

4400 124 9400 1

4500 79 9500 1

4600 81 9600 1

4700 83 9700 0

4800 82 9800 0

4900 51 9900 0

8

It can be concluded from the above data that transaction counts of above 2000 transactions per child block or
parent block, or above 6000 total child chain transactions per block, are still sometimes reached in individual
blocks. The hardcoded limits of 10000 transactions per child block or 10000 parent transactions in parent block
were never reached, therefore the system throughput has not been artificially constrained by hardcoded
restrictions.

It should also be noted that with the current transaction sizes of 185 bytes for a child chain ordinary payment
transaction, and 149 bytes for a parent chain ordinary payment transaction, the payload of a child chain block
with 2000 transactions is 360 kbytes, and a block with 6000 child chain transactions and 2000 parent chain
transactions is 1.3 MB. This is still way below the hardcoded limit of 10,000 kbytes (9.8 MB) for child chain
block with which the loadtest was run. For the average observed block transaction count of 235, the payload size
would be 42 kbytes.

With almost half of the blocks, however, having less than 200 transactions, and about 1/6 of the blocks being
empty, it is understandable that the average transaction count per block is only 235. This again suggests that such
excessively short block times of 2 s are not really helping the overall transaction throughput and for a production
system 5 to 10 s blocks are perhaps most reasonable to set.

7. Conclusion

In a test environment, a transaction throughput exceeding 100 TPS is sustainably achievable with only minor
tuning of the current production Ardor blockchain software. Consensus is maintained and the blockchain can
perform under such constant load for more than two weeks, processing over 150 M transactions. The results of
this testing, together with a field test under the expected production operational parameters of the blockchain,
can be used to arrive at an estimate of reasonable limits to use for transaction counts per block, block sizes, and
recommended block times.

